Hardware-friendly Higher-Order Neural Network Training using Distributed Evolutionary Algorithms

نویسندگان

  • Michael G. Epitropakis
  • Vassilis P. Plagianakos
  • Michael N. Vrahatis
چکیده

In this paper, we study the class of Higher-Order Neural Networks and especially the Pi-Sigma Networks. The performance of Pi-Sigma Networks is evaluated through several well known Neural Network Training benchmarks. In the experiments reported here, Distributed Evolutionary Algorithms are implemented for Pi-Sigma neural networks training. More specifically the distributed versions of the Differential Evolution and the Particle Swarm Optimization algorithms have been employed. To this end, each processor is assigned a subpopulation of potential solutions. The subpopulations are independently evolved in parallel and occasional migration is employed to allow cooperation between them. The proposed approach is applied to train Pi-Sigma Networks using threshold activation functions. Moreover, the weights and biases were confined to a narrow band of integers, constrained in the range 1⁄2 32;32 . Thus, the trained Pi-Sigma neural networks can be represented by using 6 bits. Such networks are better suited than the real weight ones for hardware implementation and to some extend are immune to low amplitude noise that possibly contaminates the training data. Experimental results suggest that the proposed training process is fast, stable and reliable and the distributed trained Pi-Sigma Networks exhibited good generalization capabilities. 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integer Weight Higher-Order Neural Network Training Using Distributed Differential Evolution

We study the class of Higher-Order Neural Networks and especially the Pi-Sigma Networks. The performance of Pi-Sigma Networks is evaluated through several well known neural network training benchmarks. In the experiments reported here, Distributed Evolutionary Algorithms for Pi-Sigma networks training are presented. More specifically the distributed version of the Differential Evolution algorit...

متن کامل

Evolutionary Algorithm Training of Higher Order Neural Networks

This chapter aims to further explore the capabilities of the Higher Order Neural Networks class and especially the Pi-Sigma Neural Networks. The performance of Pi-Sigma Networks is evaluated through several well known neural network training benchmarks. In the experiments reported here, Distributed Evolutionary Algorithms are implemented for Pi-Sigma neural networks training. More specifically,...

متن کامل

Determining water quality along the river with using evolutionary artificial neural networks (Case Study, Karoon River , Shahid Abbaspur-Arab Asad reach)

Rivers are important as the main source of supply for drinking, agriculture and industry.However, drinking water quality in terms of qualitative parameters, is the most important variable. Studias and predicting  changes in quality parameters along a river, are one of the goals of water resources planners and managers. In this regard, many water quality models in order to maintain better water ...

متن کامل

Comparison of Artificial Neural Network Training Algorithms for Predicting the Weight of Kurdi Sheep using Image Processing

Extended Abstract Introduction and Objective: Due to weakness, the occurrence of unwanted errors, the impact of the environment and exposure to natural events, human always make mistakes in their diagnoses of the environment or different topics, so that different people 's perception of a single and unique event may be very different and be diverse. Nowadays, with the development of image proc...

متن کامل

Training Neural Networks with Threshold Activation Functions and Constrained Integer Weights

Evolutionary neural network training algorithms are presented. These algorithms are applied to train neural networks with weight values confined to a narrow band of integers. We constrain the weights and biases in the range [−2k−1 + 1, 2k−1 − 1], for k = 3, 4, 5, thus they can be represented by just k bits. Such neural networks are better suited for hardware implementation than the real weight ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2010